
Abstract

Ostracode and other microfossil assemblages from the Tunisian Trough have previously been studied to characterize paleoenvi-

ronmental conditions during the late Danian interval.  Whereas the preservation of foraminifera is generally not sufficient for stable 
13 18isotope studies, well preserved ostracodes provide continuous upper Danian stable isotope records (δ C, O) at Sidi Nasseur, 

W Tunisia. The late Danian is considered to cover a hyperthermal, known as the “Latest Danian Event” (LDE; ~61.75 Ma) or “Top 

C27n Event” and has been unequivocally identified in benthic foraminiferal isotopes from shelf sediments in Egypt and deep-sea 

material from the Pacific Ocean. Stratigraphic changes in the isotope ratios of the genus Bairdia reveal a rather scattered record for 
13 13 13δ C lacking any pronounced negative δ C excursion, probably due to the many factors influencing δ C in ostracodes like metabo-

18lism, diet or dissolved inorganic carbon of sea-water. The accompanying δ O record is less ambiguous showing a shift towards 
18lower values close to the level where the LDE is to be expected, but minimum values are similar to δ O values at the base and top 

of the studied sequence. These data suggest that the core of the negative stable isotope excursions of the LDE is lost in the strati-

graphic gap at the planktic foraminiferal P3a/P3b and calcareous nannofossil NTp7A/NTp7B subzonal boundaries, so that the LDE 
13 18could not be unequivocally identified in Tunisia. A cross-plot of δ C and δ O of ostracode valves displays distinctive clusters for 

smooth-shelled taxa like Bairdia and others as well as for ornamented taxa, with the latter group showing substantially lower values 
13 18for both δ C and δ O. This pattern strongly resembles those from early Eocene data from southwestern France and Recent ostra-

codes from the Iceland Plateau. The offsets suggest substantial differences in life style, food source or isotope fractionation during 

the calcification process for different shell morphologies in ostracodes.
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1. Introduction

During the last decade, several transient hyperthermal events 

in addition to the well known Paleocene-Eocene Thermal Ma-

ximum (PETM, 55.8 Ma) have been proposed for the early Pa-

leogene greenhouse episode (e.g., Thomas and Zachos, 2000; 

Lourens et al., 2005; Quillévéré et al., 2008; Bornemann et al., 

2009; Westerhold et al., 2011). All these events have in com-

mon that they are associated with a perturbation of the global 
13carbon cycle as reflected in the δ C of biogenic carbonates 

as well as organic matter in terrestrial and marine settings, a 

warming event and/or extreme biotic responses. Based on 

studies in Egypt (Speijer, 2003; Bornemann et al., 2009) and 

the Pacific Ocean (Westerhold et al., 2011) the “Latest Danian 

Event” (LDE, or “Top C27n Event”; 61.75 Ma) has qualified as 
13 18such an event with pronounced negative δ C and δ O excur-

sions and a duration, similar to the PETM, of about 200 ka.

We primarily studied material from Tunisia of late Danian age 

which covers the stratigraphic interval of the LDE. The succes-

sion has previously been investigated for its biostratigraphy, 

ostracode and benthic foraminiferal assemblages (Steurbaut 

et al., 2000; Van Itterbeeck et al., 2007; Sprong et al., 2009). 

Quantitative records of planktic foraminifera, calcareous nan-

nofossils and dinocysts were studied in the nearby (1 km SW) 

parallel section of Aïn Settara (Guasti et al., 2006). All biotic

__

records show subtle, but distinct changes up-section that were 

thought to indicate an increase in paleoproductivity and a re-

lative sea level fluctuation across the LDE interval (Guasti et 

al., 2006; Van Itterbeeck et al., 2007). Whereas the preserva-

tion of foraminifera is generally not sufficient for geochemical 

analysis in the studied succession in Tunisia, ostracode val-

ves are well preserved and have been used to compile a first 

upper Danian stable isotope record (δ C, δ O) based on ma-

rine ostracode calcite.

Ostracodes are highly diverse microcrustaceans inhabiting 

nearly all known aquatic habitats (Horne et al., 2002). In the 

marine realm they represent an important component of the 

metazoan meiobenthos ecosystems (e.g., Richardson et al., 

1985). The carapace consisting of two valves of low-Mg cal-

cite has a high fossilization potential. During their ontogeny 

they molt up to nine times (instars) before they reach their 

adult stage (Kesling, 1951).

Ostracode assemblages are widely employed to reconstruct 

marine and non-marine environments (see Holmes and Chivas, 
132002a, and Park and Smith, 2003, for overviews). δ C and 

18δ O of ostracode calcite are often used in paleolimnology, be-

cause they are believed to reflect the characteristics of am-

bient water (e.g., Schwalb et al., 1994; Holmes, 1996; von Gra-

13 18
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fenstein et al., 1999; Keatings et al., 2002; Xia et al., 1997a, 

b). There is still ongoing research to what extent these stable 

isotope ratios are controlled by so called “vital effects” to ex-

plain isotopic disequilibria (e.g., Xia et al.,1997a, b; Holmes 

and Chivas, 2002b; Keatings et al., 2002; Li and Liu, 2010). 

However, all these studies are based on non-marine species, 

until now only one systematic stable isotope study of marine 

ostracodes has been published (Didié and Bauch, 2002), there-

fore our understanding of stable isotope applications in paleo-

ceanography based on ostracode calcite is rather poor.

The principal objectives of this study are to better characte-

rize an upper Danian succession in Tunisia by employing δ C 
18and δ O analyses of ostracode calcite as well as to gain infor-

mation on the interspecific variability and ecology of the stu-

died taxa. For understanding the observed interspecific isotope 

patterns from Tunisia, we compared them to additional data 

of two early Eocene ostracode taxa from the Corbières (SW 

France) and a previously published dataset from the Iceland 

Plateau (Didié and Bauch, 2002). Moreover, the results allow 

us to evaluate to what extent isotope measurements on Pa-

leogene ostracodes can be used to reconstruct marine paleo-

environmental conditions.

The Sidi Nasseur sections are situated near the village of 

Kalaat Senan in western Tunisia close to the Algerian border 

(Fig. 1). They are situated in the middle of a 400-m-thick Pa-

leocene hemipelagic sequence, which belongs to the El Haria 

Formation (Dupuis et al., 2001). During the late Danian depo-

sition took place in an outer shelf environment with a water 

depth of less than 200 m (Van Itterbeeck et al., 2007).

Material from two subsections below the hill top of Sidi Nas-

seur has been used: NSF, the Sidi Nasseur section of Steur-

_____
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2. Geological setting and material

2.1 Sidi Nasseur sections (nsc, nsf)

Figure 1: Locations of the studied sections._________________

baut et al. (2000), and 05NSC, a partial lateral equivalent, only 

50 m south of NSF (Van Itterbeeck et al., 2007). NSF compri-

ses a 17 m thick interval spanning the upper part of calcare-

ous nannofossil biozone NP4, from which 42 samples were 

studied. 05NSC comprises an 8 m thick interval spanning the 

same biozone in which 21 samples were also investigated. 

Van Itterbeeck et al. (2007) provided a detailed biostratigraphic 

framework based on calcareous nannofossils, planktic and 

benthic foraminifera for these sections (Fig. 2). The sequences 

were considered to cover the Danian-Selandian boundary 

(Steurbaut et al., 2000; Van Itterbeeck et al., 2007)(Fig. 2), 

but formal designation of the GSSP of the Selandian close to 

the base of Zone NP5 (Schmitz et al., 2011) now places the 

studied sequences in the upper Danian. A prominent sequence 

boundary occurs close to the P3a-P3b planktic foraminiferal 

biozone boundary probably related to a sea-level fall (Van 

Itterbeeck et al., 2007; Steurbaut and Sztrakos, 2008; Sprong 

et al., 2011, 2012).

130 m of the so called ‘Blue Marls’ were accessible in the 

Cabano Naouto section, in the vicinity of the village Pradelles-

en-Val. The lower part of the succession consists mainly of 

uniform massive dark grey marls with scarce intercalated thin 

sandstone beds. Above 110 m the marls become increasingly 

sandy, and the sandstone beds more abundant and thicker 

until they culminate in two massive banks of several meters 

thickness, representing a shift from middle neritic to coastal 

environments. This bathymetric change is reflected in the gra-

dual shift in the microfossil assemblage composition. 127 sam-

ples (PEV1-13, CN0-115) were taken from fresh in-situ marls 

in 1 m thickness intervals. Considering calcareous nannofos-

sils, the co-occurrence of Tribrachiatus orthostylus, Ellipsoli-

thus macellus and Neochiastozygus rosenkrantzii, in combi-

nation with the absence of Discoaster lodoensis, indicate cal-

careous nannofossil zone NP 11 for all studied samples yiel-

ding ostra-codes.

Samples were dried at 60°C and subsequently soaked in a 
-150 g l  Na CO  solution before being washed through a 63 µm 2 3

mesh sieve. For stable isotope analyses usually two clean 

single valves of ostracodes were used. They were picked from 

the 180 to 630 µm fraction and determined either on the ge-

neric- or species-level and cleaned in distilled water using an 

ultrasonic bath (<45 seconds). Preservation of ostracodes was 

examined using an optical binocular microscope and scanning 

electron microscopes (SEM) at the Institute of Experimental 

Physics at the University of Leipzig and at the Department of 

Earth and Environmental Sciences at the KU Leuven. Cleaned 

adult valves were reacted with 100% phosphoric acid at 75°C 

using a Kiel III online carbonate preparation line connected to 

a ThermoFinnigan 252 mass spectrometer at the University of 

Erlangen. Reproducibility was checked by replicate analysis of 

__________________________________

2.2 Cabano Naouto section, Corbières 

(SW France)

3. Methods
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Figure 2: 13 18 δ C and O records of Bairdia from the upper Danian of the Sidi Nasseur sequence in Tunisia. Thick line represents a 3-point moving 

average.

δ

laboratory standards and is better than ±0.05 and 0.06‰ (1σ) 
13 18for δ C and O, respectively. All values are reported in ‰ 

13relative to VPDB by assigning a δ C value of +1.95‰ and a 
18δ O value of -2.20‰ to NBS19. All data shown in this paper 

are available as an online supplement.

Carbonate preservation of ostracode valves is crucial for in-

terpreting geochemical data. Under the light microscope the 

studied material from Tunisia shows good preservation with 

primary pores and ornamentation, while under the SEM first 

signs of incipient recrystallization on the valve surface of reti-

culated taxa become visible (Plate 1). Ostracode valves from

δ

__________________

4. Results and discussion

4.1 Preservation of ostracode valves

the Corbières section are somewhat more recrystallized. Ne-

vertheless, the overall good preservation of the analyzed Pa-

leogene valves lets us still expect a reliable signal of stable 

isotopes even for δ O, which is more prone to diagenetic al-
13teration than δ C (e.g., Marshall, 1992).

13 18δ C and δ O analyses of foraminiferal calcite are widely 

used for reconstructing paleoceanographic and paleoclimatic 

condition prevailing in Cenozoic oceans (e.g., Shackleton, 

1967; Kroopnick, 1985; McCorkle and Keigwin, 1994; Zachos 

et al., 2008). Stable isotopes of ostracodes are commonly 

employed in paleolimnology (e.g., Schwalb et al., 1994; von

Grafenstein et al., 1999) and sometimes on fossil material

since the Paleozoic (e.g., Janz and Vennemann, 2005; Toth 

et al., 2010; Bennett et al., 2011), whereas systematic stable 

isotope studies on marine taxa are rare (Mazzini et al., 1999; 

Didié and Bauch, 2002). In contrast to foraminifera, whose iso-

tope signals represent an average of their full ontogeny, cal-

18
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4.2 Upper Danian ostracode stable iso-

tope records from Tunisia
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Figure 3: 13 18 δ C - O cross plots of the Danian ostracode samples from Tunisia. (A) Selected samples, (B) all analyses from the NSF and NSC 

sections.

δ

cification of ostracode valves is a rapid process, which often 

takes place within a few hours or days (Turpen and Angell, 

1971). Therefore the ostracode isotope signal provides only 

a snap-shot of the prevailing paleoceanographic conditions 

and multiple single-specimen measurements exhibit a much 

higher natural variability than benthic foraminifera.
13 18In order to document stratigraphic changes of δ C and O 

during the late Danian in Tunisia we compiled a continuous 

mono-generic Bairdia record. Hyperthermal events like the 

PETM are usually characterized by a pronounced negative 
13δ C excursion related to the injection of isotopically light car-

bon into the ocean-atmosphere system and transient warming 
18as reflected in the δ O of various carbonate-bearing archives 

or other temperature-controlled proxies like Mg/Ca or TEX  86

(e.g., Dickens et al., 1995; Zachos et al., 2006; Sluijs et al., 
132007). A negative δ C excursion by up to 2‰ for the LDE, 

which is situated close to the P3a-P3b planktic foraminiferal 

boundary and NTp7a-NTp7b nannofossil boundary, has been 

documented in several Egyptian sections, in Zumaia (Spain) 

and possibly at the Wombat Plateau (see compilation by 

Bornemann et al., 2009). In addition, Westerhold et al. (2011) 

were able to show at a deep-sea site in the Pacific Ocean
18that this event is associated with a negative 0.5‰ shift in δ O

of benthic foraminiferal calcite indicating a slight bottom water 

warming of ~2-3°C. However, such evidence for warming has 

not been observed before in sediments from the southern Te-

thyan margin as discussed by Bornemann et al. (2009) nei-

ther for the LDE nor for the more severe PETM (Schmitz et 
18al., 1996). This may be due to the highly variable δ O chan-

_________

δ

ges on sub-tropical shelf sections caused by high amplitude 

changes in the evaporation-precipitation or diagenetic altera-

tion of the calcareous tests (mainly thick-shelled nodosarians; 

Schmitz et al., 1996; Bornemann et al., 2009).

The δ C  data fluctuate between -1.6 and 0.5‰ with 

a high variability of >1‰ within a sample, therefore no convin-
13cing negative δ C excursion is apparent in our record from 

Sidi Nasseur (Fig. 2). One likely reason might be that the par-

ticular event level is not preserved in the studied succession, 

since the P3a/P3b boundary is located close to an unconfor-

mity that coincides with two different biozonal boundaries (Fig. 

2; Van Itterbeeck et al., 2007; Steurbaut and Sztrakos, 2008). 
13Alternatively the δ C record may strongly be biased by so 

called “vital effects” that obscured any primary environmental 

signal. These vital effects are well known for ostracodes and 

are caused by a metabolic control of carbon isotope fractiona-
13tion, differences in diet, change in δ C  or even different DIC

modes of calcification. Moreover, it has to be considered that 

ostracode carapaces represent a very short-time interval, as 

molting takes place within hours or days (Turpen and Angell, 

1971). The Sidi Nasseur succession represents subtropical

shelf deposits. In such a setting the hydrographic conditions

are largely controlled by seasonal changes in primary produc-

tivity and evaporation-precipitation. This may also cause an 

increased variability of the data compared to foraminiferal cal-

cite records from southern Tethyan margin.
18The δ O data range from -0.9 to 0.4‰ with a <0.6‰ varia-

bility within a sample and exhibit a maximum just below the 

P3a-P3b boundary, which is followed by a 1‰ shift to lower

____________

_______________

13 Bairdia
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Figure 4: 13 18 (A) δ C - O cross plots of ostracodes from the lower Eocene succession of the Corbières section (SW France) and (B) an ostracode– 

benthic foraminifera comparison from surface sediments recovered from the Iceland Plateau (Didié and Bauch, 2002). The dotted greyish lines in (B) re-
18present the δ O of equilibrium calcite (horizontal line) and the δ13C of dissolved inorganic carbon (vertical line) according to Didié and Bauch (2002).

δ

__

values across this boundary (Fig. 2). For comparison deep-

sea benthic foraminiferal values vary from 0.6‰ to 0.8‰ (Za-

chos et al., 2008; Westerhold et al., 2011) indicating cooler 

deep-sea temperatures as expected. It is well known that the 

ostracode carapace calcite is not precipitated in equilibrium 

with the ambient water. This is expressed in a substantial po-

sitive deviation from equilibrium values (Holmes and Chivas, 

2002b), so the real difference might have been >2‰ larger 

suggesting reasonable >10°C warmer temperatures for the 

Tunisian shelf compared to the deep-ocean. However, the 

δ O data are believed to display a constant species-specific 
18offset and a strong correlation with temperature and δ O of 

the ambient water mass (e.g., Xia et al., 1997a; Didié and 

Bauch, 2002; Chivas et al., 2002; Li and Liu, 2010). If these 
18δ O changes reflect primary signals, then an increase in bot-

tom water temperature or seasonally enhanced freshwater 

input are possible explanations for the observed shift. A war-

ming of bottom water temperature would support the hypothe-

sis that the LDE is representing an early Cenozoic hyperther-

mal, however, as pointed out above the low temporal samp-

ling resolution and the existence of an unconformity at the 

P3a/P3b boundary makes it difficult to confirm this hypothesis. 

Moreover, similar negative values are recorded near the base 
18and the top of the section. δ O variations at this frequency 

have not been described before for this time interval, so their

relevance to climate change during the LDE remains unclear.

13 18δ C-δ O cross plots of all studied ostracode taxa consisting 

of a wide range of morphologies reveal two clearly separated 

clusters independent of whether the data are plotted sample-

wise or as the complete data set (Fig. 3A and B). The first clus-

18

4.3 Further implications for Paleogene 

ostracode analyses________________________

ter comprises smooth-shelled taxa like Bairdia showing relati-

vely high isotope values for both δ C and δ O with a range 
13between -2 and 0.4‰ for δ C, and between -1 and 0.5‰ for 

18δ O (Fig. 3B). Other smooth and usually thinner shelled taxa 
13like Parakrithe, Paracypris or Cytherella display similar δ C 

18values as Bairdia, although their δ O values are on average 

about 1‰ lower. The second cluster is made up by sculptured 

taxa like Mauritsina, Ordoniya and Paracosta (amongst others) 
13show much lower values ranging from -6.2‰ to -3‰ for δ C 

18and from -1.7‰ to -0.7‰ for δ O (Fig. 3B).

Very similar patterns are observed in the lower Eocene data 

from the Corbières section (SW France) and in modern data 

from the Iceland Plateau by Didié and Bauch (2002; Fig. 4), 

suggesting that the general isotopic offset between smooth 

and ornamented taxa is a common feature in Cenozoic oceans. 

In the Corbières the heavily ornamented taxon Horrificiella 
13 18aculeata (δ C: -6 to -4‰; δ O: -3.8 to -2.3‰) shows subs-

tantially lower values than the smooth shelled Bairdia crebra 
13 18(δ C: 0 to 1.7‰; δ O: 1.6 to 2.9‰). The latter are on average 

18 13about 1.2‰ higher with respect to δ O and 6‰ for δ C than 

Horrificiella (Fig. 4A).

At the Iceland Plateau, Didié and Bauch (2002) observed an 
13 18offset with respect to both δ C and δ O between the smooth-

shelled Krithe and the sculptured Henryhowella, with the latter 

showing lower values for both isotope systems compared to

Krithe (Fig. 4B). This shift cannot be explained by their micro-

habitat since Krithe is usually viewed as an endobenthic taxon 
13and should thereby display lower δ C values than epibenthic 

Henryhowella. Didié and Bauch (2002) also argued that diffe-

rences in diet, metabolism and processes controlling calcifica-

tion might be responsible for this shift. In addition, Keatings et 

al. (2002) discussed the presence of slightly acidic conditions 

in the inner lamellae of ostracode valves during calcification

13 18
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18in order to explain O disequilibria.
13The δ C differences between the analysed groups of up to 

7‰ are difficult to explain by different microhabitats and a re-

sulting pore water gradient. Even additional secondary calcite 

or incipient recrystallization of reticulated and ornamented 

ostracode valves are unlikely the cause of these consistently 

large offsets. Furthermore, our data suggest that this diffe-

rence is more pronounced in the fossil material (2 to 7‰), 

compared with only ~1‰ in the Nordic Sea (Didié and Bauch, 

2002). Possible explanations for this discrepancy are different 

oceanographic conditions in the Paleogene, including a stron-
13ger fractionation with respect to δ C in Paleogene oceans 

probably due to a more efficient biological carbon pump, or 

differences in diet.

Another potential factor attributing to these offsets could be 

a (species-specific) kinetic fractionation effect leading to the 

depletion of the heavier isotope species as previously obser-

ved in asymbiotic planktic foraminifera and corals (McCon-

naughey, 1989; Spero and Lea, 1996). The latter could also 

be typical for rapid calcification processes in ostracodes. Until 

now the rapidness of calcite precipitation and the factors con-

trolling ostracode size and calcification particularly of marine 

taxa are poorly documented. However, results from culture 

experiments of non-marine ostracodes suggest increased os-

tracode growth rates, calcification and shortened intermolting 

times at higher temperatures (e.g., Martens, 1985; Mezquita 

et al., 1999; Li and Liu, 2010).

This would imply that smooth valved taxa are less affected 

by kinetic fractionation probably due to slower calcification du-

ring their molting and calcification phase than ornamented os-

tracodes, or alternatively simply by different modes of calcifi-

cation (Keyser and Walter, 2004). A complex system of calcifi-

cation processes has been reported by Yamada et al. (2005), 

specifically regarding the formation of ridges of the marine os-

tracode taxon Semicytherura. The observation that the forma-

tion of ornamentation is different from smooth-valved ostraco-

des might be also one possible explanation for the clustering. 

We can conclude that there are numerous unresolved problems 
13 18in interpreting δ C and δ O of marine ostracode calcite, spe-

cifically in past shelf sediments without any information about 

the isotopic composition of sea-water. Studies under control-

led or monitored conditions on marine taxa are indispensible 

to improve our understanding on the prospects and limits of 

stable isotope application of marine ostracode calcite.

13 18The study of δ C and δ O of marine ostracode valves from

the Paleogene revealed the following results:

δ ____________________
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5. Conclusions
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Figure

Figure
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Figure

Figure

Scanning electron microscope images showing important taxa studied herein and document their 

state of preservation.

Bairdia septentrionalis (adult, left valve; Tunisia, sample NSF 8.5, upper-most 

Danian);

close up of (A);

Paracosta parakefensis (adult, right valve; Tunisia, NSF 8.5, uppermost 

Danian);

close up of (C);

Bairdia crebra (adult carapace, right valve view; Corbières, lower Eocene);

Horrificiella aculeata (adult, female, right valve, Corbières, lower Eocene);
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